欧美一级在线毛片免费观看,国产成人精品视频一区二区不卡 ,成年人精品视频,国产精品手机视频

搜索期刊名稱或人工推薦 均能查詢

MACHINE LEARNING

SCI/SCIE
MACHINE LEARNING
雜志名稱:機器學(xué)習(xí)
簡稱:MACH LEARN
期刊ISSN:0885-6125
大類研究方向:工程技術(shù)
影響因子:2.809
數(shù)據(jù)庫類型:SCI/SCIE
是否OA:No
出版地:UNITED STATES
年文章數(shù):68
小類研究方向:工程技術(shù)-計算機:人工智能
審稿速度:較慢,6-12周
平均錄用比例:容易

官方網(wǎng)站:http://link.springer.com/journal/10994

投稿網(wǎng)址:https://www.editorialmanager.com/mach/

填單可快速匹配SCI/SSCI/AHCI期刊 解答審稿周期、版面費、獲取論文模板

MACHINE LEARNING

英文簡介

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to effectively perform a specific task without using explicit instructions, relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model of sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.[1][2]:2 Machine learning algorithms are used in a wide variety of applications, such as email filtering, and computer vision, where it is infeasible to develop an algorithm of specific instructions for performing the task. Machine learning is closely related to computational statistics, which focuses on making predictions using computers. The study of mathematical optimization delivers methods, theory and application domains to the field of machine learning. Data mining is a field of study within machine learning, and focuses on exploratory data analysis through unsupervised learning.[3][4] In its application across business problems, machine learning is also referred to as predictive analytics.

MACHINE LEARNING

中文簡介

機器學(xué)習(xí)(ML)是對計算機系統(tǒng)使用的算法和統(tǒng)計模型的科學(xué)研究,這些算法和統(tǒng)計模型不使用顯式指令,而是依靠模式和推理來有效地執(zhí)行特定的任務(wù)。它被視為人工智能的一個子集。機器學(xué)習(xí)算法建立一個樣本數(shù)據(jù)的數(shù)學(xué)模型,稱為“訓(xùn)練數(shù)據(jù)”,以便在沒有明確編程來執(zhí)行任務(wù)的情況下做出預(yù)測或決策。機器學(xué)習(xí)算法被廣泛應(yīng)用于各種各樣的應(yīng)用中,如電子郵件過濾和計算機視覺,在這些應(yīng)用中,它對數(shù)據(jù)是不可行的。執(zhí)行任務(wù)的特定指令的算法。機器學(xué)習(xí)與計算統(tǒng)計密切相關(guān),計算統(tǒng)計集中于使用計算機進行預(yù)測。數(shù)學(xué)優(yōu)化的研究為機器學(xué)習(xí)領(lǐng)域提供了方法、理論和應(yīng)用領(lǐng)域。數(shù)據(jù)挖掘是機器學(xué)習(xí)中的一個研究領(lǐng)域,其重點是通過無監(jiān)督學(xué)習(xí)進行探索性數(shù)據(jù)分析在其跨業(yè)務(wù)問題的應(yīng)用中,機器學(xué)習(xí)也稱為預(yù)測分析。

MACHINE LEARNING

中科院分區(qū)(請以最新為準)
大類學(xué)科 分區(qū) 小類學(xué)科 分區(qū) Top期刊 綜述期刊
計算機科學(xué) 3區(qū) COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 3區(qū)

MACHINE LEARNING

JCR分區(qū)(請以最新為準)
JCR分區(qū)等級 JCR所屬學(xué)科 分區(qū) 影響因子
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q2 5.414

MACHINE LEARNING

中科院JCR分區(qū)歷年趨勢圖

MACHINE LEARNING

影響因子
同類領(lǐng)域發(fā)論文期刊推薦

精選同類領(lǐng)域期刊,免費推薦輕松get~

SCI期刊分類

Academic journals
期刊分區(qū)查詢