欧美一级在线毛片免费观看,国产成人精品视频一区二区不卡 ,成年人精品视频,国产精品手机视频

搜索期刊名稱或人工推薦 均能查詢

Journal of Hyperbolic Differential Equations

SCIE
Journal of Hyperbolic Differential Equations
雜志名稱:雙曲微分方程雜志
簡稱:J HYPERBOL DIFFER EQ
期刊ISSN:0219-8916
大類研究方向:數學
影響因子:0.426
數據庫類型:SCIE
是否OA:No
出版地:UNITED STATES
年文章數:24
小類研究方向:數學-應用數學
審稿速度:平均6月
平均錄用比例:約50%

官方網站:http://www.worldscientific.com/worldscinet/jhde

投稿網址:http://www.worldscientific.com/page/jhde/submission-guidelines

填單可快速匹配SCI/SSCI/AHCI期刊 解答審稿周期、版面費、獲取論文模板

Journal of Hyperbolic Differential Equations

英文簡介

This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.The Journal aims to provide a forum for the community of researchers who are currently working in the very active area of nonlinear hyperbolic problems, and will also serve as a source of information for the users of such research.There is no a priori limitation on the length of submitted manuscripts, and even long papers may be published.

Journal of Hyperbolic Differential Equations

中文簡介

該期刊發表關于非線性雙曲線問題和相關主題的原始研究論文,數學和/或物理興趣。具體而言,它邀請了關于雙曲守恒定律和數學物理中出現的雙曲偏微分方程的理論和數值分析的論文。期刊歡迎以下方面的貢獻:非線性雙曲守恒定律系統理論,解決了一個或多個空間維度中解的適定性和定性行為問題。數學物理的雙曲微分方程,如廣義相對論的愛因斯坦方程,狄拉克方程,麥克斯韋方程,相對論流體模型等。洛倫茲幾何,特別是滿足愛因斯坦方程的時空的全局幾何和因果理論方面。連續體物理中出現的非線性雙曲系統,如:流體動力學的雙曲線模型,跨音速流的混合模型等。由有限速度現象主導(但不是唯一驅動)的一般問題,例如雙曲線系統的耗散和色散擾動,以及來自統計力學和與流體動力學方程的推導相關的其他概率模型的模型。雙曲型方程數值方法的收斂性分析:有限差分格式,有限體積格式等。該期刊旨在為目前正在非?;钴S的非線性雙曲線問題領域工作的研究人員提供一個論壇,并且還將作為此類研究用戶的信息來源。提交稿件的長度沒有先驗限制,甚至可能會發表長篇論文。

同類領域發論文期刊推薦

精選同類領域期刊,免費推薦輕松get~

SCI期刊分類

Academic journals
期刊分區查詢